Challenges with %-level CMB lensing science

Alex van Engelen CITA fellow U. Toronto

with N. Sehgal, B. Sherwin, G. Holder, S. Bhattacharya, J. Meyers, D. Green, ACTPol collaboration

Lensing autospectrum current state-of-the-art

Timeline of CMB experiments

Abazajian+ 2014 (Snowmass white paper)

Figure 6. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV experiment (such as CMB-S4) having O(100,000) detectors.

- Half the sky
- 5 frequencies
- Map sensitivity 5x better than *Planck*
- Spatial resolution 5x better than *Planck*

After that: SO, S4

Galaxy and K maps, overlaid

All smoothed to 1° scales

Cross-correlation applications

$$<$$
KCMB $\delta_{gal}>$

- b_{gal}(z)
- Distance ratios with multiple sources
- Calibrating multiplicative shear biases
- Independent measure of m_v?

- Mass tomography with long lever arm
- Calibrating shear intrinsic alignments
- Calibrating multiplicative shear biases

Unlensed 10° × 10°

Lensed 10° × 10°

Quadratic estimator

Noise per mode in CMB

Noise per mode in reconstructed lensing field Set by $1/(l_{\text{max}})^2$

- Temperature-dominated for time being
- Statistical error dominated for time being

Foreground biases to cross-correlation

Temperature

• SZ • Clustered $\langle TTg \rangle$

Polarization

• Polarized sources (Poisson) $\langle I \rangle$

 $\langle EBg \rangle$

Foreground "correlatedness" bias

At a local overdensity of lensing mass, CMB stretches out:

But also a local excess of variance from tracers

Missing CMB fluctuation "filled in" with tracers

Less lensing inferred

Sensitive to <S S K> bispectrum

Foreground biases

from temperature at one frequency (150 GHz)

AvE, Bhattacharya, Sehgal, Holder, Zahn, Nagai 2014

Foreground biases

from temperature at one frequency (150 GHz)

Foreground biases

How to remove?

- Use multiwavelength (AdvACT 5 frequencies)
- Estimate bispectra of sources and project out (Osborne+ 2014)
- Use polarization, not temperature (very high-sensitivity CMB maps Simons Observatory, CMB-S4)

non-linear growth, < KKK>

e.g., in auto: $\langle \delta T \delta T' T' \rangle \sim \langle T_{,i} \phi_{,i} T_{,j} \phi_{,j} T'_{,k} \phi'_{,k} T' \rangle$

Also: post-Born effects: <0.2% on auto-power (Pratten & Lewis 2016, last week)

One more application: Delensing small-scale C_I^{TT} , C_I^{EE}

Calabrese et al. (2008)

One more application: Delensing small-scale C_I^{TT} , C_I^{EE}

- Perturbative approach used in forecasting C_I^{BB} delensing is perturbative and only removes power
- We do "all-orders"
 correlation function based delensing
 (Challinor+Lewis 2006)
- Can use any LSS map in principle (today, CIB; tomorrow, φ(EB))

One more application: Delensing small-scale C_I^{TT} , C_I^{EE}

Neff

• Neff defined via:
$$\rho_{\rm r} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right)$$
 $N_{\rm eff}^{\rm CMB} = 3.04 \pm 0.18$

- V + other ρ_r : damping
- V + free-streaming species: phase shift in CMB acoustic peaks (detected with *Planck*, Follin+ 2015)

Forecasted constraints on Neff

using CIEE data only

Theory target: $\Delta N_{\text{eff}} > 0.027$ for massless field in equilibrium with SM

We also include lensinduced couplings in Cov(C_I^{X,}C_I^Y) for {X,Y} in {TT,TE,EE,KK}

Green, Meyers, AVE 2016 in prep.

Summary

- CMB lensing is currently done with temperature and is statistical-error limited
- Current and future cross- and auto-correlations with temperature-based data may have issues with sources and with non-linear growth - 3 solutions

 Delensing high-ell T and E maps will improve N_{eff} constraints